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Abstract. This paper presents a new approach to construct more efficient reduced-order models
for nonlinear partial differential equations with proper orthogonal decomposition and the discrete
empirical interpolation method (DEIM). Whereas DEIM projects the nonlinear term onto one global
subspace, our localized discrete empirical interpolation method (LDEIM) computes several local
subspaces, each tailored to a particular region of characteristic system behavior. Then, depending on
the current state of the system, LDEIM selects an appropriate local subspace for the approximation
of the nonlinear term. In this way, the dimensions of the local DEIM subspaces, and thus the
computational costs, remain low even though the system might exhibit a wide range of behaviors as it
passes through different regimes. LDEIM uses machine learning methods in the offline computational
phase to discover these regions via clustering. Local DEIM approximations are then computed for
each cluster. In the online computational phase, machine-learning-based classification procedures
select one of these local subspaces adaptively as the computation proceeds. The classification can
be achieved using either the system parameters or a low-dimensional representation of the current
state of the system obtained via feature extraction. The LDEIM approach is demonstrated for a
reacting flow example of an H2-Air flame. In this example, where the system state has a strong
nonlinear dependence on the parameters, the LDEIM provides speedups of two orders of magnitude
over standard DEIM.
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1. Introduction. A dramatic increase in the complexity of today’s models and
simulations in computational science and engineering has outpaced advances in com-
puting power, particularly for applications where a large number of model evaluations
is required, such as uncertainty quantification, design and optimization, and inverse
problems. In many cases, reduced-order models can provide a similar accuracy to
high-fidelity models but with orders of magnitude reduction in computational com-
plexity. They achieve this by approximating the solution in a lower-dimensional,
problem-dependent subspace. With localization approaches, the dimension of the
reduced model, and thus the computational cost of solving it, can be further re-
duced by constructing not just one but multiple local subspaces and then, depend-
ing on the current state of the system, selecting an appropriate local subspace for
the approximation. We present a localization approach based on machine learning
techniques to approximate nonlinear terms in reduced-order models of nonlinear par-
tial differential equations (PDEs) with the discrete empirical interpolation method
(DEIM). This paper proposes a localization approach tailored to the DEIM setting and
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addresses the particular questions of how to construct the local subspaces and how to
select an appropriate approximation subspace with respect to the current state of the
system.

Projection-based model reduction methods reduce the complexity of solving PDEs
by employing Galerkin projection of the equations onto the subspace spanned by a
set of basis vectors. In addition to truncated balanced realization [28] and Krylov
subspace methods [19], a popular method to construct the basis vectors is proper
orthogonal decomposition (POD) [34, 7, 31]. For many applications, the dynamics of
the system underlying the governing equations can often be represented by a small
number of POD modes, leading to significantly reduced computational complexity
but maintaining a high level of accuracy when compared to the original high-fidelity
model.

With POD, efficient reduced-order models can be constructed for PDEs with affine
parameter dependence or low-order polynomial nonlinearities [12]. However, POD-
Galerkin poses a challenge if applied to systems with a general nonlinear term, because
the cost to evaluate the projected nonlinear function still requires computations that
scale with the dimension of the original system. This can lead to reduced-order mod-
els with similar computational costs as the original high-fidelity model. A number
of solutions to this problem have been proposed. In [32], the nonlinear function is
linearized at specific points of a trajectory in the state space and then approximated
by threading linear models at those points along the trajectory. Another approach is
based on subsampling the nonlinear term in certain components and reconstructing all
other components via gappy POD [4]. The Gauss–Newton with approximated tensors
(GNAT) method [11] and the empirical interpolation method (EIM) [6, 21] are two
other approaches to approximately represent the nonlinear term with sparse sampling.
Here, we use the discrete version of EIM, that is, DEIM [12]. EIM and DEIM con-
struct a separate subspace for the approximation of the nonlinear term of the PDE,
select interpolation points via a greedy strategy, and then combine interpolation and
projection to approximate the nonlinear function in the subspace.

If the system exhibits a wide range of behaviors, many DEIM basis vectors and in-
terpolation points are required to accurately approximate the nonlinear term. There-
fore, our localized discrete empirical interpolation method (LDEIM) constructs not
just one global DEIM interpolant but rather multiple local DEIM interpolants, each
tailored to a particular system behavior. In the context of model reduction, similar
concepts have been proposed in different contexts. In [23, 33], reduced-order models
based on adaptive reduced bases are discussed. In [22, 14], the parameter and time
domains are split recursively into subdomains and for each subdomain a separate
reduced-order model, including a separate EIM interpolant of the nonlinear term, is
built. In that approach, reduced-order models might be constructed multiple times
if the system exhibits similar state solutions at different points in time (which nec-
essarily correspond to different time subdomains). Furthermore, the switch from one
reduced model to another requires a projection of the state solution onto the basis of
the new reduced model, which might introduce numerical instabilities [25]. A similar
approach is followed in [16, 15, 17]. These methods have in common that they recur-
sively split the parameter domain, which might in practice lead to a large number of
subdomains because a poor division in the beginning cannot be corrected later on.
To avoid these drawbacks, in [1, 36] similar snapshots are grouped into clusters with
unsupervised learning methods and for each cluster a local reduced-order model is
built. A local reduced-order model is then selected with respect to the current state
of the system. This localization approach in [1] is applied to the projection basis for
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the state (i.e., the POD basis) and also for the approximation of the nonlinear term
with the GNAT method [11]. One drawback of this approach is that unsupervised
learning methods can encounter difficulties such as unstable clustering behavior for
large numbers of clusters if the clustering method and its parameters are not care-
fully chosen [35, 18, 3]. Furthermore, the given procedure in [1] requires precomputing
auxiliary quantities to ensure an online selection procedure that is independent of the
dimension of the original system and that scales linearly with the number of clusters;
however, the number of the auxiliary quantities, which are computed in the offline
phase, scales cubically with the number of clusters.

This work develops a localization approach for the DEIM approximation of a
nonlinear reduced model. For many applications, we have observed that it is the
growth of the DEIM basis dimension (and the associated growth in the number of
interpolation points) that counters the computational efficiency of the POD-DEIM
reduced-order model (see, e.g., [38]). By applying localization to the DEIM represen-
tation of the nonlinear term, we achieve substantial improvements in computational
efficiency for applications that otherwise require a large number of DEIM basis vec-
tors. In [1], it has already been observed that finding a local approximation subspace
is an unsupervised learning task. We carry this observation over to DEIM and ad-
ditionally consider the selection of the local subspaces as a supervised learning task.
This allows us to develop our localized DEIM with all the advantages of [1, 36] but
with two additional benefits. First, our method can handle large numbers of clusters
because rather than directly clustering the high-dimensional snapshots with respect
to the Euclidean distance, we instead use a DEIM-based distance measure or feature
extraction to cluster in a lower-dimensional representation. Thus, we expect a more
stable clustering because we cluster points in low-dimensional subspaces and not in
high-dimensional spaces, where clustering with respect to general distance measures
becomes difficult [30, 26]. Second, the runtime of the online phase in LDEIM is in-
dependent of the number of clusters because we employ nearest neighbor classifiers
for the adaptive selection of the local interpolants. In addition, because the DEIM
approximation can be fully decoupled from the POD basis, no basis transformation
of the state vector is required when we switch from one DEIM interpolant to another.

The remainder of this paper is organized as follows. In section 2 we briefly review
POD-DEIM-Galerkin, define our notation, and discuss the limitations of DEIM. Then,
in section 3, our localized DEIM is developed in a general setting where we highlight
the close relationship to machine learning. We continue with two variants—parameter-
based LDEIM and state-based LDEIM—in sections 4 and 5, respectively. Finally, our
method is applied to benchmark examples and a reacting flow simulation of an H2-Air
flame in section 6 before conclusions are drawn in section 7.

2. Problem formulation. Our starting point is the system of nonlinear equa-
tions

(2.1) Ay(μ) + F (y(μ)) = 0

stemming from a discretization of a parametrized PDE, where the operators A ∈
R

N×N and F : RN → R
N correspond to the linear and the nonlinear term of the

PDE, respectively. The solution or state vector y(μ) = [y1(μ), . . . , yN (μ)]T ∈ R
N

for a particular parameter μ ∈ D ⊂ R
d is an N -dimensional vector. The components

of the nonlinear function F are constructed by the scalar function F : R → R which
is evaluated at each component of y(μ), i.e., F (y(μ)) = [F (y1(μ)), . . . , F (yN (μ))]T .
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The Jacobian of the system (2.1) is given by

(2.2) J(y(μ)) = A+ JF (y(μ)) ,

where JF (y(μ)) = diag{F ′(y1(μ)), . . . , F ′(yN (μ))} ∈ R
N×N because F is evaluated

at y(μ) componentwise.

2.1. POD. We use POD to compute a reduced basis of dimension N�N . We
select the sampling points P = {μ1, . . . ,μm} ⊂ D and build the state snapshot matrix
Y = [y(μ1), . . . ,y(μm)] ∈ R

N×m whose ith column contains the solution y(μi) of
(2.1) with parameter μi. We compute the singular value decomposition of Y and put
the first N left singular vectors corresponding to the N largest singular values as the
POD basis vectors in the columns of the matrix V N = [v1, . . . ,vN ] ∈ R

N×N . With
Galerkin projection, we obtain the reduced-order system of (2.1)

(2.3) V T
NAV N ỹ(μ) + V T

NF (V N ỹ(μ)) = 0,

where V N ỹ(μ) replaces the state vector y(μ). We call ỹ(μ) ∈ R
N the reduced state

vector. The reduced Jacobian is

(2.4) JN = V T
NAV N + V T

NJF (V N ỹ(μ))V N .

This POD-Galerkin method is usually split into a computationally expensive off-
line and a rapid online phase. This splitting into offline and online phases works well
for the linear operator. In the offline phase, the snapshot matrix Y and the POD
basis V N are computed. The POD basis V N is then used to construct the reduced
operator Ã = V T

NAV N ∈ R
N×N . In the online phase, only Ã is required to solve the

reduced-order system (2.3). However, this efficient offline/online splitting does not
hold for the nonlinear operator F , since we cannot precompute a reduced nonlinear
operator as we have done with A but instead must evaluate the nonlinear function F
at all N components of V N ỹ(μ) in the online phase. If N is large and the evaluation
of F expensive, the time to evaluate the nonlinear term in the reduced system (2.3)
will dominate the overall solution time and supersede the savings obtained for the
linear term through the POD-Galerkin method.

2.2. DEIM. One way to overcome this weakness of the POD-Galerkin method
is with DEIM [12]. It approximates the nonlinear function F on a linear subspace
spanned by basis vectors U = [u1, . . . ,uM ] ∈ R

N×M that are obtained by apply-
ing POD to snapshots S = {F (y(μ1)), . . . ,F (y(μm))} of the nonlinear term. The
system F (y(μ)) ≈ Uα(μ) to obtain the coefficients α(μ) ∈ R

M is overdetermined.
Thus, DEIM selects only M rows of U to compute the coefficients α(μ). Formally, a
matrix P = [ep1 , . . . , epM ] ∈ R

N×M is introduced, where ei is the ith column of the
identity matrix. The DEIM interpolation points p1, . . . , pM are selected with a greedy
algorithm. Assuming P TU is nonsingular, the coefficients α(μ) can be determined
from P TF (y(μ)) = (P TU)α(μ) and we obtain

(2.5) F (y(μ)) ≈ U(P TU)−1P TF (y(μ)).
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In the following, we denote a DEIM approximation or DEIM interpolant with the
tuple (U ,P ). We obtain the POD-DEIM-Galerkin reduced-order system

(2.6) V T
NAV N︸ ︷︷ ︸
N×N

ỹ(μ) + V T
NU(P TU)−1

︸ ︷︷ ︸
N×M

P TF (V N ỹ(μ)) = 0

and the reduced Jacobian

(2.7) J̃F (ỹ(μ)) = V T
NAV N︸ ︷︷ ︸
N×N

+V T
NU(P TU)−1

︸ ︷︷ ︸
N×M

JF (P
TV N ỹ(μ))︸ ︷︷ ︸
M×M

P TV N︸ ︷︷ ︸
M×N

.

We see in (2.6) and (2.7) that with the POD-DEIM-Galerkin method we evaluate the
nonlinear term F only at M instead of at N points. Similarly to N � N for the
POD basis, we assume M � N for DEIM and thus expect savings in computational
costs. We refer to [12] for more details on DEIM in general and the greedy algorithm
to select the interpolation points in particular.

2.3. Limitations of DEIM. Whether DEIM does indeed lead to savings in
the runtime depends on the number M of basis vectors and interpolation points. The
DEIM approximates the nonlinear term F in the subspace of dimensionM spanned by
U . For some nonlinear systems, a large number M of DEIM basis vectors are required
to accurately represent F over the range of situations of interest. We demonstrate
this on a simple interpolation example as follows.

Consider the spatial domain Ω = [0, 1]2 and the parameter domain D = [0, 1]2.
We define the function g1 : Ω×D → R with

(2.8)

g1(x;μ) =
1√

((1 − x1)− (0.99 · μ1 − 1))2 + ((1− x2)− (0.99 · μ2 − 1))2 + 0.12
.

The parameter μ = (μ1, μ2) controls the gradient of the peak near the corner (1, 1)
of the spatial domain [0, 1]2. Based on g1, let us consider the function

g4(x;μ) = g1(x;μ) + g1(1− x1, 1− x2; 1− μ1, 1− μ2)(2.9)

+ g1(1− x1, x2; 1− μ1, μ2) + g1(x1, 1− x2;μ1, 1− μ2).

Depending on the parameter μ, the function g4 has a sharp peak in one of the four
corners of Ω; see Figure 2.1. We discretize the functions g1 and g4 on a 20 × 20
equidistant grid in Ω and randomly sample on a 25× 25 equidistant grid in D. From
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(a) µ = (0.1, 0.1) (b) µ = (0.9, 0.9) (c) µ = (0.1, 0.9) (d) µ = (0.9, 0.1)

Fig. 2.1. Depending on the parameter µ, the function g4 has a sharp peak in one of the four
corners of the spatial domain.



LOCALIZED DEIM A173

10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

DEIM interpolation points

av
g 

L2  e
rr

or

 

 

one peak (g1)

four peaks (g4)   

0 50 100 150 200 250
10

−15

10
−12

10
−9

10
−6

10
−3

10
0

number of singular value
no

rm
al

iz
ed

 s
in

gu
la

r 
va

lu
es

 

 

one peak (g1)

four peaks (g4)   

(a) error (b) singular values

Fig. 2.2. In (a) the averaged L2 error versus the number M of DEIM interpolation points
corresponding to the function with one (g1) and four (g4) peaks, respectively. The more peaks, the
worse the result. This is reflected in the decay of the singular values shown in (b).

the 625 snapshots, we build the DEIM approximations. Figure 2.2 shows the aver-
aged L2 error of the approximations over a set of test samples {μ1, . . . ,μ121} that
correspond to an 11× 11 equidistant grid in D. The results for g4 are worse than for
g1. This is reflected in the slower decay of the singular values of the snapshot matrix
corresponding to g4. Even though g4 is just a sum of g1 functions, and, depending on
the parameter μ, only one of the summands determines the behavior of g4, we still
obtain worse results than for g1. The reason is that the DEIM basis must represent all
four peaks. It cannot focus on only one (local) peak as is possible when we consider
one g1 function only. This also means that if we choose the parameter μ = (0.1, 0.9)
which leads to only one sharp peak of g4 near the corner (0.1, 0.9) of Ω, just a few
DEIM basis vectors are relevant for the approximation and all others are ignored.
This is a clear waste of resources and motivates our development of LDEIM.

3. Localized discrete empirical interpolation method. DEIM approxi-
mates the nonlinear term F on a single linear subspace which must represent F (y(μ))
well for all μ ∈ D. Instead, we propose to compute several local DEIM approxima-
tions, which are each adapted to a small subset of parameters, or which are each fitted
to a particular region in state space. We refer to this approach as the localized dis-
crete empirical interpolation method (LDEIM). In this section, we first introduce the
general idea of LDEIM and then propose two specific LDEIM variants. We start by
discussing the computational procedure of LDEIM in more detail. LDEIM constructs
several local DEIM approximations (U1,P 1), . . . , (Uk,P k) offline and then selects
one of them online. We will see that the two building blocks of LDEIM are the corre-
sponding construction and selection procedures, for which machine learning methods
play a crucial role. In this section, we also discuss the error and the computational
costs of LDEIM approximations. Finally, two specific LDEIM variants—parameter-
based LDEIM and state-based LDEIM—are introduced and the differences between
them are discussed.

3.1. LDEIM. Let S = {F (y(μ1)), . . . ,F (y(μm))} be the set of nonlinear snap-
shots. In the offline phase of LDEIM, we group similar snapshots together and obtain
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a partition S1 � · · · � Sk of S with k subsets. Here, snapshots are considered to be
similar and should be grouped together if they can be approximated well with the
same set of DEIM basis vectors and interpolation points. For each of these subsets,
we construct a local DEIM approximation with the classical DEIM procedure. Thus,
for each set Si, we obtain a (U i,P i) where the basis and the interpolation points
are adapted to the snapshots in Si only. Furthermore, also in the offline phase, we
compute the so-called classifier c : Z → {1, . . . , k}. Its purpose is to select a good
local DEIM approximation (U i,P i) with respect to an indicator z ∈ Z. The indica-
tor z must describe F (y(μ)) well enough to decide which local DEIM approximation
should be used. The classifier is trained on the indicators of the nonlinear snapshots.
Many different indicators are possible. For example, a simple indicator is the param-
eter μ. However, this is not the only possibility and is not always a good choice. We
defer the discussion of specific indicators to section 3.4, where we then also specify the
domain Z. The output of the offline phase contains the local DEIM approximations
(U1,P 1), . . . , (Uk,P k) and the classifier c : Z → {1, . . . , k}. In the online phase, we
compute z, evaluate the classifier, and, depending on its value, switch between the
local DEIM approximations. This workflow is sketched in Figure 3.1.

With LDEIM, the Galerkin reduced-order system takes the shape

(3.1) V T
NAV N ỹ(μ) + V T

NU c(·)(P
T
c(·)U c(·))−1P T

c(·)F (V N ỹ(μ)) = 0 ,

instead of (2.6), and the reduced Jacobian is

(3.2) J̃F (ỹ(μ)) = V T
NAV N + V T

NU c(·)(P
T
c(·)U c(·))−1JF (P

T
c(·)V N ỹ(μ))P T

c(·)V N ,

instead of (2.7). The DEIM basis U and the matrix P depend through the classifier c
on the indicator z and thus on the nonlinear term F (y(μ)) evaluated at y(μ). Instead
of one V T

NU(P TU)−1 for the nonlinear term F , we now precompute k matrices

Fig. 3.1. LDEIM workflow. Offline, a partitioning method splits the snapshots S into several
groups Si. For each group a separate DEIM approximation is computed and stored. A classifier c
learns the mapping between the indicators z and the particular group i to which it has been assigned.
Online, the classifier c selects a local DEIM approximation (U i,P i) with respect to the indicator z.



LOCALIZED DEIM A175

(3.3) V T
NU i(P

T
i U i)

−1 , i = 1, . . . , k,

from which one is picked according to c in the online phase. It is important to note
that DEIM can be fully decoupled from the POD projection of the state. Thus, when
we change the DEIM basis, we do not influence the POD basis V N .

3.2. Learning local bases. The offline phase of LDEIM consists of two steps.
First, it groups similar snapshots together to obtain a partition of the set S for which
the local DEIM interpolants are constructed, and second, it computes the classifier
c : Z → {1, . . . , k} to later select an appropriate local interpolant. These are both
machine learning tasks.

We first consider the partitioning of S. In terms of machine learning this means
we want to cluster the data points in S with respect to a certain clustering criterion
[8]. The input to the clustering method is the set S, and the output is a partition
S1 � · · · � Sk in k subsets or clusters. In the following, we use k-means clustering
(Lloyd’s algorithm), along with other partitioning approaches. The k-means algorithm
is a standard clustering algorithm that has been applied successfully to many different
applications. Usually, we determine the number of clusters k in advance. Many rules
of thumb, as well as sophisticated statistical methods, are available to estimate the
number of clusters from the data points. We refer to [20] for an overview and to [10]
for an approach well suited for k-means.

Having obtained a partition of S, we compute the function c : Z → {1, . . . , k}. In
machine learning, this task is called classification [8]. Inputs are the partition of S and
the indicators {z1, . . . , zm} corresponding to the nonlinear snapshots {F (y(μ1)), . . . ,
F (y(μm))}. The result of the classification is the classifier c : Z → {1, . . . , k}.
Classification is a ubiquitous task in data mining with many classification methods
available. Here we employ nearest neighbor classifiers. They can track curved clas-
sification boundaries and are cheap to evaluate if the number of neighbors is kept
low. Low computational cost is crucial here, since we evaluate the classifier during
the online phase.

In principle, any clustering and classification methods can be employed for LDEIM.
Besides the advantages discussed above, we use k-means and nearest neighbor classi-
fication because they are widely used and readily available in many software libraries.
Note, however, that even though k-means and nearest neighbor classification are the
core of the following clustering and classification methods, a thorough preprocessing
of the data and some modifications are necessary to achieve a stable clustering and a
reliable selection procedure. More details will follow in sections 4 and 5.

3.3. Error and computational costs of LDEIM approximation. The er-
ror estimates associated with DEIM (e.g., [12, 37, 13]) can be carried over to LDEIM.
Even though we choose between multiple local DEIM approximations, the eventual
approximation itself is just a classical DEIM approximation where these error esti-
mates hold.

In the offline phase of LDEIM, we incur additional computational costs to perform
the clustering of S and the classification to obtain c. In addition, we precompute
several matrices (3.3) instead of only one as in the case of DEIM. This leads to an
overall increase in the offline costs, although for large-scale problems this increase is
small compared to the dominating cost of simulation to obtain the snapshots (which
remains the same between DEIM and LDEIM). Note that, even though not considered
further here, the local DEIM interpolants are fully decoupled from each other and thus
can easily be computed in parallel in the offline phase. The online phase of LDEIM
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is very similar to that of DEIM. The only additional cost incurred is that to evaluate
the classifier c. As discussed previously, we employ a nearest neighbor classifier,
the cost of which is small. (In particular, the cost does not depend on the number
m of nonlinear snapshots in S or on the number of clusters k.) Evaluation of the
classifier also requires computing the indicator z for the current F (y(μ)). We show
in sections 4 and 5 that for two specific indicators, the costs to obtain z are low.
From these observations, we can summarize that using LDEIM is advantageous for
applications for which one can tolerate an increase in offline costs that is outweighed
by an online cost benefit due to the reduction in dimension of the DEIM basis. We also
note that we refrain from performing online basis updates to increase the accuracy
as proposed in, e.g., [36], because this would greatly increase the costs of the online
phase.

3.4. Parameter-based LDEIM and state-based LDEIM. So far, we have
discussed LDEIM in a very general setting. In particular, we have not specified
the indicator z of F (y(μ)), i.e., we have not specified the domain Z of the clas-
sifier c : Z → {1, . . . , k}. The indicator z must contain enough information to
select a good local DEIM approximation. In the following, we introduce two spe-
cific indicators leading to two LDEIM variants—parameter-based and state-based
LDEIM.

In the parameter-based LDEIM, the indicator z of F (y(μ)) is the parameter
μ ∈ D. The domain Z becomes the parameter domain D and we obtain the classifier
c : D → {1, . . . , k}. Thus, we decide with respect to the parameter μ which local
DEIM approximation is used. The parameter-based LDEIM is closely related to
other localization approaches in model order reduction [16, 15, 17, 14]. It will be
discussed in detail in section 4. In contrast, the state-based LDEIM computes a low-
dimensional representation of F (y(μ)) with feature selection and feature extraction.
Thus, the indicator z is directly derived from F (y(μ)), i.e., from the nonlinear term
F evaluated at y(μ), and not from the parameter μ. The domain Z of the classifier
c : Z → {1, . . . , k} becomes a low-dimensional subspace of RN . The details follow
in section 5. Note that we can distinguish between parameter-based and state-based
LDEIM by considering the domain Z of the classifier c.

We summarize that parameter-based LDEIM requires the parameter to decide
which local DEIM interpolant to select, whereas state-based LDEIM solely relies on
a low-dimensional representation of the state.

We emphasize the difference between the parameter-based and state-based LDEIM
by considering the Newton method to solve our nonlinear system. In case of the
parameter-based LDEIM, we pick a local DEIM interpolant (U i,P i) depending on the
parameter μ before we start with the first Newton iteration. Since the indicator z = μ
does not change during the Newton iterations, we always keep (U i,P i) and never
switch between the local DEIM approximations. However, for the case of the state-
based LDEIM, the indicator z is directly derived from the nonlinear term independent
from the parameter μ. Therefore, if we evaluate the classifier c after each Newton
iteration, we might get different local DEIM approximations in each iteration because
the (reduced) state vector ỹ(μ) and thus the nonlinear term F (V N ỹ(μ)) change.
This means that the state-based LDEIM can switch between different DEIM ap-
proximations even within the Newton method, whereas the parameter-based LDEIM
keeps one local DEIM interpolant fixed until convergence. In the following two
sections, we present the parameter-based and state-based LDEIM in detail.
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4. Parameter-based LDEIM. In this section, we consider the parameter-
based LDEIM where the classifier is c : D → {1, . . . , k} with domain D. The
parameter-based LDEIM is motivated by the relationship μ → F (y(μ)) showing
that the value of the nonlinear function F is influenced by the parameter μ through
the state vector y(μ). Therefore, the parameter μ may be a good indicator for the
behavior of the function F . In the previous section, we introduced the partitioning
of the set S and the selection of a local DEIM approximation as two building blocks
of LDEIM. As partitioning approaches, we now present a splitting and a clustering
method, which are especially well suited for the parameter-based LDEIM.

4.1. Splitting of the parameter domain. Each snapshot in S is associated to
one parameter μ in the parameter domain D. These parameters are collected in the
set P = {μ1, . . . ,μm} ⊂ D. If we split the parameter domain D into k subdomains, we
can derive the corresponding partition of P and thus of the set of snapshots S. Hence,
we have divided our snapshots into k groups (or clusters). Note that similar procedures
have previously been used in the context of model reduction; see, e.g., [22, 14].

Consider the parameter domain D = [a, b]d. Let ε > 0 be a tolerance value and
M the number of basis vectors and interpolation points of a local DEIM approxima-
tion. The parameter domain D is split into subdomains D1, . . . ,Dk in a recursive
fashion. We start with a DEIM interpolant (U ,P ), constructed from S, and split
the parameter domain D into 2d subdomains D1, . . . ,D2d of equal size if the DEIM
residual

(4.1) max
w∈S

{‖U(P TU)−1P Tw −w‖2
}

is greater than ε. Then the corresponding subsets P = P1 � · · · � P2d and S =
S1 � · · · � S2d are constructed and a (U i,P i) is built for each Si. We continue this
splitting process in each subdomain Di as long as the DEIM residual (4.1) of Si with
(U i,P i) is above the tolerance and there are more thanM snapshots left in the current
set Si. The result is the partition of S and D with the corresponding k local DEIM
approximations (U 1,P 1), . . . , (Uk,P k). The algorithm is shown in Algorithm 1.

It is not necessary to choose the number of subdomains k in advance because the
number k is influenced by the tolerance ε. During the splitting process, we compute
O(k log(k)) local DEIM approximations in the offline phase. The classifier c : D →
{1, . . . , k} can be easily evaluated at μ by storing the centers of the subdomains
D1, . . . ,Dk and comparing them to the parameter μ. One evaluation of c is in O(k).
Since k < 100 in all the following examples, the additional costs incurred by the
classification of μ are usually low.

4.2. Clustering of snapshots. The splitting-based partitioner constructs the
groups Si based on the DEIM residual (4.1) as a property of the entire group of
snapshots. If the group residual is below a certain threshold, then the identified
group (subdomain) is accepted and no further splitting takes place.

Another way to construct groups is to freely group the snapshots S into clusters
using k-means. The assignment of a snapshot to a cluster i is based on the individual
property of a snapshot in S that its DEIM approximation within the ith group is
the best among the rest of the clusters (groups). Whereas splitting can put two
snapshots into one subset (cluster) only if their parameters lie near each other in D
with respect to the Euclidean norm, clustering with k-means can assign two snapshots
to one cluster even though their parameters might be very different. This is a more
flexible way to derive a partition of S.
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Algorithm 1. Splitting of the parameter domain D.
1: procedure D-splitting(ε, M , D, S)
2: (U ,P )← DEIM(S, M)

3: r← maxw∈S
{
‖U(P TU)−1P Tw −w‖2

}
4: �← empty list
5: if r > ε and |S| > M then
6: partition D into 2d subdomains (squares) D1, . . . ,D2d

7: partition S into 2d subsets S1, . . . ,S2d
8: for (D̃, S̃) in {(Di,Si)|i = 1, . . . , 2d} do
9: �i ← D-splitting(ε, M , D̃, S̃)

10: �← concatenate lists � and �i
11: end for
12: else
13: �← append (D,S,U ,P ) to list �
14: end if
15: return �
16: end procedure

In addition to the number of clusters k, we must define three things before we
cluster with k-means. First, we define the data points that we want to cluster. In our
case, these are the snapshots in S. Second, we define the centroid of a cluster. Here,
the centroid of a cluster is its (local) DEIM approximation. Third, we need a clustering
criterion. In k-means, the clustering criterion is evaluated for each data point with
each cluster centroid, to decide to which cluster the data point should be assigned.
By choosing the local DEIM approximations as the centroids, we assign a data point
to the cluster where the corresponding DEIM residual is smallest. The motivation for
this clustering criterion is the greedy procedure where the DEIM residual is used to
select the DEIM interpolation points [12].

Initially, all snapshots are randomly assigned to a start cluster. This leads to a
partition of S into S1 � · · · � Sk and the associated partition of P into P1 � · · · � Pk.
With the local DEIM approximations computed from a given clustering, a k-means
iteration reassigns the snapshots to new clusters according to the DEIM residual.
After several iterations, the k-means algorithm is stopped if no swapping takes place
or a maximum number of iterations has been reached.

Though k-means is widely used in many applications, it has the drawback that
it only finds a local optimum to the minimization problem underlying its clustering
idea [24]. Thus, the solution (clustering) depends on the initial cluster assignment
or seed with which k-means is started. There exist many strategies for the seed of
k-means but either they scale poorly with the number of data points or they are
mere rules of thumb [3, 5, 2, 27]. For this reason we use a random initial cluster
assignment. However, this random initial guess might fit poorly with the data and thus
the clustering result might not group the snapshots in S as desired. To ensure a good
clustering, we perform several k-means replicates and select the cluster assignment
with the minimal within-cluster sum. This is a standard way to cope with randomized
initial guesses in k-means.

The result of the clustering method is a partition S = S1 � · · · � Sk and P =
P1 � · · · � Pk. This gives rise to the training data set
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Algorithm 2. Construction procedure of parameter-based LDEIM.

1: procedure D-Clustering(S, k)
2: {Pi,Si}ki=1 ← initial random partitioning of S and corresponding P
3: clustering← zeros-filled array of size |S|
4: for maxIter do
5: {Ui,Pi}ki=1 ← {deim(Si)}ki=1

6: for j = 1 to |S| do
7: clustering[j]← argmin

i=1,...,k
‖Ui(P

T
i Ui)

−1PT
i F (y(μj))− F (y(μj))‖2

8: end for
9: {Pi,Si}ki=1 ← new partitioning based on updated clustering

10: end for
11: c← train classifier on P1 × {1} ∪ · · · ∪ Pk × {k}
12: return (c,{Ui,Pi}ki=1)
13: end procedure

(4.2) P1 × {1} ∪ · · · ∪ Pk × {k} ⊂ D × {1, . . . , k}

for the classifier c : D → {1, . . . , k}. It is unreasonable to simply compare a parameter
μ with the centers of the clusters P1, . . . ,Pk as we have done in the previous section
because the clusters most probably do not have a rectangular shape. Therefore, we
employ a nearest neighbor classifier.

5. State-based LDEIM. In the parameter-based LDEIM the indicator z is
the parameter μ and thus a local DEIM interpolant is selected with respect to the
parameter of the system. Here, we introduce state-based LDEIM where the indicator
z is directly derived from the nonlinear term F evaluated at y(μ) or, more precisely,
evaluated at the state y(μ) of the previous iteration or time step. With this approach
it is possible to switch the local DEIM interpolant whenever a change in the system
occurs even when the parameter μ does not change (e.g., in every time step or in every
Newton iteration as discussed in section 3). The state-based LDEIM is appropriate
for time-dependent problems and for nonlinear problems where several iterations are
necessary to obtain the output of interest (e.g., using a Newton method).

In the following, we first present an efficient way to compute the indicator z
directly from F (y(μ)), and then discuss a clustering and classification method that
can deal with such indicators. We develop the approach in the context of the New-
ton method, although there are many other situations where state-based LDEIM is
applicable. We denote with ỹj(μ) the reduced state vector after the jth Newton
iteration.

5.1. Low-dimensional representations via feature extraction. In princi-
ple, we could train a classifier c : R

N → {1, . . . , k} with domain R
N directly on

the partition S = S1 � · · · � Sk obtained in the offline phase and then evaluate c at
F (V N ỹj(μ)) after the jth Newton iteration to get the index of the local DEIM inter-
polant for the j+1th iteration. However, this would require us to evaluate F at all N
components of V N ỹj(μ). We cannot afford this during the online phase. Therefore,

to obtain a more cost-efficient indicator, we construct a map F̃ : RN → R
M̃ , with

M̃ � N , that will replace F in the evaluation of the indicator. The vector z =

F̃ (ỹ(μ)) becomes the indicator of F (V N ỹ(μ)). To construct the classifier c : RM̃ →
{1, . . . , k}, we compute the indicators S̃ = {z1, . . . , zm} = {F̃ (V T

Ny(μ1)), . . . ,
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F̃ (V T
Ny(μm))} of the snapshots in S and then train c on the indicators S̃ with

respect to the partition S = S1 � · · · � Sk. We compute zj = F̃ (ỹj(μ)) in the jth
Newton iteration and evaluate the classifier at zj to get the index of the local DEIM
interpolant for the j + 1th iteration.

In machine learning, this way of constructing the indicator z is called feature
extraction or feature selection [8]. With F̃ (ỹj(μ)) we represent the high-dimensional

vector F (V N ỹj(μ)) in a low-dimensional space R
M̃ , where F̃ (ỹj(μ)) still contains

the relevant information to correctly classify the point F (V N ỹj(μ)). It is important
to note that the main purpose of the indicator zj = F̃ (ỹj(μ)) is not to be a good
approximation of F (V N ỹj(μ)) but only to decide with c(zj) which local DEIM ap-
proximation to use for the approximation in the j + 1th iteration. Since we need the
indicator zj = F̃ (ỹj(μ)) of F (V N ỹj(μ)) whenever we want to switch the local DEIM
approximation, the evaluation of F̃ must be cheap to ensure a rapid online phase.

We propose two different maps F̃ to compute the indicators. Let (Ug,P g) be

the (global) DEIM approximation with M̃ basis vectors and M̃ interpolation points
constructed from the set of nonlinear snapshots S. We define the DEIM-based feature
extraction as

(5.1) F̃D(ỹj(μ)) = (P T
g Ug)

−1P T
g F (V N ỹj(μ))

and the point-based feature extraction as

(5.2) F̃ P (ỹ
j(μ)) = P T

g F (V N ỹj(μ)).

Both F̃D and F̃ P require us to evaluate only M̃ components of F . The DEIM-based

feature extraction F̃D maps F (V N ỹj(μ)) onto the coefficients α(μ) ∈ R
M̃ of the

DEIM linear combination Uα(μ). This is a good representation of the important
information contained in F (V N ỹj(μ)) because of the properties of the POD basis
U underlying DEIM. The motivation for (5.2) is the greedy algorithm of the DEIM
[12], which can be considered as feature extraction. It selects those components of
F (V N ỹj(μ)) which are used to compute the coefficients of the linear combination
with the DEIM basis U . Thus, the selected components play an essential role in
capturing the behavior of the nonlinear term [12]. The point-based feature extraction

does not require the matrix-vector product with (P T
g Ug)

−1 ∈ R
M̃×M̃ and thus it is

computationally cheaper than the DEIM-based map F̃D.

5.2. Efficient computation of the indicator. In contrast to the parameter-
based LDEIM where z was simply the parameter μ, the computation of the indi-
cator zj = F̃ (ỹj(μ)) introduces additional costs. If we consider the two proposed
representations (5.1) and (5.2), we see that the nonlinear term is evaluated at M̃

components, and a matrix-vector product with (P T
g Ug)

−1 ∈ R
M̃×M̃ is required in

the case of the DEIM-based feature extraction. Whereas the computational costs of
the matrix-vector product with a matrix of size M̃ × M̃ are negligible, the costs of
evaluating the nonlinear term F at M̃ components for the feature extraction might
be quite high even though M̃ is usually much smaller than M . Note that the M̃
components required for the DEIM approximation underlying the feature extraction
are most probably different from the M components used in the local DEIM approx-
imations. Therefore, we do not evaluate F but instead interpolate F with the local
DEIM approximation at the M̃ components required to get the indicator. Thus, for
each local DEIM approximation (U i,P i), we store the matrix

(5.3) WD
i = (P T

g Ug)
−1P T

g U i(P
T
i U i)

−1 ∈ R
M̃×M
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for the DEIM-based feature extraction (5.1) and the matrix

(5.4) W P
i = P T

g U i(P
T
i U i)

−1 ∈ R
M̃×M

for the point-based feature extraction (5.2). Now, suppose the local DEIM interpolant
(U i,P i) has been selected for the approximation in the jth Newton iteration. Then
we store the vector

f̃
j
= P iF (V N ỹj(μ)) .

This vector is used to compute the local DEIM approximation in the system (3.1) in
the jth iteration, but it is also used to compute the indicator zj of F (V N ỹj(μ)) with
the matrix (5.3) and (5.4), respectively.

We emphasize that this allows us to perform the feature extraction without any
additional evaluations of the nonlinear term F . Thus, just as in the parameter-based
LDEIM, we evaluate the nonlinear term only at theM components for the local DEIM
approximation. This interpolation introduces a small additional error that can lead
to a different selection of the local DEIM approximation than if we evaluated the
nonlinear term at the M̃ components. The numerical results in section 6 show that
this error has a small effect on the overall accuracy of the state-based LDEIM.

5.3. Clustering and classification method for state-based LDEIM. In
contrast to the clustering method used in the parameter-based LDEIM, the state-
based LDEIM does not directly cluster the high-dimensional snapshots in S but
clusters their indicators in S̃ = {F̃ (V T

Ny(μ1)), . . . , F̃ (V T
Ny(μm))}. The data in S̃

are clustered with k-means with respect to the Euclidean norm and with a random

initial clustering. The cluster centroids are now points in R
M̃ and in each iteration

of k-means, a point z ∈ S̃ is assigned to the cluster

argmin
i∈{1,...,k}

‖si − z‖2 ,

where si is the cluster centroid of cluster i. The Euclidean norm is a sufficient choice
here because the indicators in S̃ already contain only the most important information

about the snapshots. Note that it is cheaper to cluster S̃ ⊂ R
M̃ instead of S ⊂ R

N

as in the parameter-based LDEIM.

The result of the clustering method is a partition S̃1 � · · · � S̃k of S̃ and therefore
also of S into k subsets. For each of the subsets S1, . . . ,Sk, we compute a DEIM
approximation (U1,P 1), . . . , (Uk,P k). The classifier c : Z → {1, . . . , k} with Z =

R
M̃ is then trained on the data

(5.5) S̃1 × {1} ∪ · · · ∪ S̃k × {k} ⊂ R
M̃ × {1, . . . , k}.

As in the parameter-based LDEIM, we employ a nearest neighbor classifier.

5.4. Offline and online procedure. The computational procedure of the state-
based LDEIM follows the usual decomposition into an offline and an online phase.
In the offline phase, we cluster the set of snapshots S and construct the classifier
c : Z → {1, . . . , k}. In the online phase, we solve the nonlinear reduced model using
the Newton method, where we employ the local DEIM approximation chosen by the
classifier.
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Algorithm 3. Construction procedure of state-based LDEIM.

1: procedure conSLDEIM(M , M̃ , k, S, F̃ , V N )
2: S̃ ← {F̃ (V T

Ny(μ1)), . . . , F̃ (V T
Ny(μm))}

3: (S̃1, . . . , S̃k)← k-means(S̃, k, ‖ · ‖2)
4: c← train classifier on S̃1 × {1} ∪ . . . ∪ S̃k × {k}
5: (Ug,P g)← DEIM(S, M̃)
6: �← empty list
7: for i = 1 : k do
8: Si = {F (y(μn)) | F̃ (V Ny(μn)) ∈ S̃i}
9: (U i,P i)← DEIM(Si, M)

10: W i ← depending on the feature extraction store either matrix (5.3) or
(5.4)

11: �← append ((U i,P i),W i) to list �
12: end for
13: return (�, (Ug,P g))
14: end procedure

5.4.1. Offline phase. The core of the offline phase is the construction procedure
summarized in Algorithm 3. Inputs are the number M of local DEIM basis vectors
and interpolation points, the dimensions M̃ of the indicator z, the number of clusters
k, the set of snapshots S, the map F̃ , and the POD basis V N . First, the indicators of
the snapshots in S are computed and stored in S̃. Then, they are clustered with the
k-means clustering method as discussed in section 5.3. The result is the partition of S̃
and of S into k subsets. For each subset Si, the local DEIM approximation (U i,P i)
is built and the matrix W i is stored. The matrix W i is either (5.3) or (5.4). The
global DEIM approximation (Ug,P g) as well as the matrix W i are required for the
efficient construction of the indicator z in the online phase.

The k-means clustering method is initialized with a random cluster assignment.
As discussed in section 5.3, the k-means clustering is repeated several times to ensure
a good clustering. Still, in certain situations, this might not be enough. Therefore, we
additionally split off a small test data set and repeat the whole construction procedure
in Algorithm 3 several times for S. We then select the result of the run where the
DEIM residual (4.1) for the test data set is smallest.

5.4.2. Online phase. In the online phase, our task is to select a local DEIM ap-
proximation (U i,P i) for the next Newton iteration. The selection procedure is shown
in Algorithm 4. The inputs are the list � containing the local DEIM approximations
and the matrices W 1, . . . ,W k as computed in Algorithm 3, the index i ∈ {1, . . . , k}
of the local DEIM approximation employed in the j-th Newton iteration, the state

vector ỹj+1(μ) computed in the jth iteration, and the vector f̃
j
= P iF (V N ỹj(μ)).

With the matrix W i the indicator zj is computed. Then the index i of the local
DEIM approximation for the j + 1th Newton iteration is updated by evaluating the
classifier c at zj. We can then evaluate the nonlinear term F (V N ỹj+1(μ)) at the

indices given by the matrix P i and store the values in f̃
j+1

. The outputs are the

vector f̃
j+1

and the index i of the local DEIM approximation for the j+1th Newton
iteration.

Note that if the Newton method does not converge, we switch to a classical
DEIM approximation with M basis vectors and M interpolation points. This is not
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Algorithm 4. Selection procedure of state-based LDEIM.

1: procedure selSLDEIM(V N , F , �, c, i, ỹj+1(μ), f̃
j
)

2: z ←W if̃
j

3: i← c(z)

4: f̃
j+1 ← P iF (V N ỹj+1(μ))

5: return (i, f̃
j+1

)
6: end procedure

needed in the parameter-based LDEIM because there we do not switch the local
DEIM interpolant between Newton iterations. The fall back to the classical DEIM is
necessary only in exceptional cases, e.g., if the solution lies just between two clusters
and we jump back and forth between them.

6. Numerical results. In this section, we show that using LDEIM we achieve
the same level of accuracy as with DEIM but with fewer interpolation points. In
section 6.1, parameter-based LDEIM is demonstrated on three benchmark problems.
In section 6.2, we consider a reacting flow example of a two-dimensional premixed
H2-Air flame where we compare DEIM to parameter-based LDEIM and state-based
LDEIM. We employ the k-means implementation available in MATLAB and the near-
est neighbor search engine of the FLANN library [29].

6.1. Parameter-based LDEIM. In section 2.3 in (2.8), we introduced the
function g1 : Ω × D → R with the parameter μ ∈ D controlling the gradient of
the peak in the corner (1, 1) of the domain Ω. Based on g1, we defined in (2.9) the
function g4. Depending on the parameter μ, the function g4 has a peak in one of the
four corners of Ω. Let us define g2 : Ω×D → R as

g2(x;μ) = g1(x;μ) + g1(1 − x1, 1− x2; 1− μ1, 1− μ2) ,

where the parameters control a peak in the left bottom or the right top corner of
Ω. We discretize g1, g2, and g4 on a 20 × 20 equidistant grid in Ω, sample on a
25 × 25 grid in D to compute 625 snapshots, and compute the DEIM interpolant
and the parameter-based LDEIM interpolant with splitting and clustering. For the
splitting approach, we set the tolerance ε in Algorithm 1 to 1e-07, 1e-06, and 1e-05
for g1, g2, and g4, respectively. For the clustering approach, the number of clusters
is k = 4. Note that we cannot employ state-based LDEIM here because we have a
pure interpolation task and no time steps or Newton iterations; see section 5. The
interpolants are tested with the snapshots corresponding to the 11 × 11 equidistant
grid in D. As in section 2.3, we compare the averaged L2 error of the approximations
with respect to the analytically given functions g1, g2, and g4. The results are shown
in Figure 6.1.

The plots in the first row of Figure 6.1 indicate the subdomains of D obtained
with the splitting approach. For example, consider g2. The domain is split most
near the left bottom and right top corners, i.e., in locations where, depending on the
parameter, a peak can occur. We find similar behavior for g1 and g4. In the second
row, we plot the parameters in D corresponding to the 25× 25 snapshots and color
them according to the cluster assignment obtained with the parameter-based LDEIM
with clustering. Again, the clusters divide D according to where the sharp peaks
occur. We see that the clusters allow a more flexible partition of D. In particular,
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Fig. 6.1. Parameter-based LDEIM applied to the three benchmark examples g1 (left), g2 (mid-
dle), and g4 (right). Both splitting and clustering methods group the snapshots in a reasonable way.
The splitting and the clustering are shown for 20 DEIM basis vectors and interpolation points. Ac-
curacy compared to DEIM improves around two orders of magnitude and up to four orders in the
case of g4.

this can be seen for g1, where we obtain clusters with curvilinear boundaries. In the
third row of Figure 6.1, we plot the averaged L2 error against the number of DEIM
interpolation points. LDEIM achieves an accuracy up to four orders of magnitude
higher than DEIM. In section 2.3, we argued that DEIM approximates the function
g4 worse than g1 because the DEIM interpolant has to capture all four peaks of g4 at
once. If we now compare the result obtained with LDEIM for g4 with the result of
DEIM for g1, we see that we have a similarly good performance with LDEIM for g4

as with DEIM for g1. This is expected because each cluster corresponds to exactly
one peak, i.e., one summand in (2.9), and thus the four local DEIM approximations
together should be able to approximate g4 as well as one global DEIM interpolant
approximates g1.
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Fig. 6.2. The DEIM interpolation points for the functions g1, g2, and g4. We set the number
of DEIM basis vectors and interpolation points to 20.

Figure 6.2 shows the interpolation points picked by the DEIM. It can be seen that
DEIM concentrates on the right top corner in case of g1. For the functions g2 and g4,
however, DEIM distributes the points roughly equally among the four corners; thus,
many more interpolation points would be required to cover all corners sufficiently. In
Figure 6.3, we plot the LDEIM interpolation points of the four interpolants corre-
sponding to the four clusters of LDEIM shown in Figure 6.1. In case of the function
g4, each cluster corresponds to one corner of the spatial domain and thus each local
DEIM interpolant can place its interpolation points near its corner. We find a similar
situation for function g2 where cluster 2 and cluster 3 correspond to the peaks. For
function g1 too, the localization achieves an improvement by placing the interpolation
points near either the top or the right edge of the domain.

6.2. Reacting flow simulation. We consider a model of a steady premixed
H2-Air flame. We briefly introduce the problem, its governing equations, and the
POD-DEIM reduced-order model, but we refer to [9] for a detailed discussion.

We simulate the two-dimensional premixed H2-Air flame underlying the one-step
reaction mechanism

2H2 +O2 → 2H2O ,

where H2 is the fuel, O2 is the oxidizer, and H2O is the product. The evolution of the
flame in the domain Ω is given by the nonlinear advection-diffusion-reaction equation

(6.1) κΔy − w∇y + f(y,μ) = 0 ,

where y = [yH2 , yO2 , yH2O, T ]
T contains the mass fractions of species H2,O2, and

H2O and the temperature. The constants κ = 2.0cm2/sec and w = 50cm/sec are
the molecular diffusivity and the velocity in x1 direction, respectively. The geometry
of the domain Ω is shown in Figure 6.4. With the notation of Figure 6.4, we have
homogeneous Dirichlet boundary conditions on the mass fractions on Γ1 and Γ3 and
homogeneous Neumann conditions on temperature and mass fractions on Γ4,Γ5, and
Γ6. We have Dirichlet conditions on Γ2 with yH2 = 0.0282, yO2 = 0.2259, yH2O =
0, yT = 950K and on Γ1,Γ3 with yT = 300K.

The nonlinear reaction source term f(y,μ) = [fH2(y,μ), fO2(y,μ), fH2O(y,μ),
fT (y,μ)]

T in (6.1) has the components
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Fig. 6.3. The interpolation points corresponding to the local DEIM approximations obtained
with parameter-based LDEIM with clustering for the functions g1, g2, and g4. We set the number
of local DEIM modes to 20. The clustering allows LDEIM to concentrate the interpolation points
in only certain parts of the spatial domain, i.e., near the corners.
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Fig. 6.4. The spatial domain of the reacting flow simulation [9].

fi(y,μ) = −νi (ηH2yH2)
2
(ηO2yO2)μ1 exp

(
− μ2

RT

)
, i = H2,O2,H2O,

fT (y,μ) = QfH2O(y,μ),

where νi and ηi are constant parameters, R = 8.314472J/(mol K) is the universal gas
constant, and Q = 9800K is the heat of reaction. The parameters μ = (μ1, μ2) ∈
D with D = [5.5e+11, 1.5e+13] × [1.5e+03, 9.5e+03] are the preexponential factor
and the activation energy, respectively. Equation (6.1) is discretized using the finite
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difference method on a 73× 37 grid leading to N = 10, 804 degrees of freedom. The
result is a nonlinear system of discrete algebraic equations

(6.2) Ay + F (y,μ) = 0 ,

where now the vector y ∈ R
N contains the mass fractions and temperature at the grid

points. The matrixA ∈ R
N×N corresponds to the linear differential operators and the

function F : RN → R
N to the nonlinear source term. The nonlinear equations (6.2)

are solved with the Newton method. In [9], the POD-DEIM reduced-order system is
derived as

(6.3) V T
NAy + V T

NAV N ỹ + V T
NU(P TU)−1F (P Ty + P TV N ỹ,μ) = 0

with the arithmetic mean y of the set of snapshots {y1, . . . ,ym}, the POD basis
V N ∈ R

N×N computed from {yj − y}mj=1, and the DEIM interpolant (U ,P ) with
M modes. The snapshots are computed for the parameters on a 50× 50 equidistant
grid in D.

Instead of DEIM, we employ parameter-based and state-based LDEIM, solve the
POD-LDEIM system for parameters on a 24× 24 grid in D, and compute the average
relative error of the temperature with respect to the full-order finite difference model.
The results are shown in Figure 6.5. Figure 6.5(a) compares DEIM, parameter-based
LDEIM with splitting and clustering, and state-based LDEIM. For splitting, we set
the tolerance ε to 1e-08, which is about two orders below what DEIM achieves. For
the parameter-based LDEIM with clustering, the number of clusters is set to 5. More
clusters lead to unstable behavior. For the state-based LDEIM, however, we set
the number of clusters to 15. The state-based LDEIM uses the point-based feature
extraction (5.2) with M̃ = 5 dimensions. In all cases, we have 40 POD modes. In
Figure 6.5(a), we see that the results of the parameter-based LDEIM with clustering
do not improve after about 10 DEIM modes. Again, the clustering becomes unstable.
However, this is not the case for state-based LDEIM, which achieves about two orders
of magnitude better accuracy than DEIM. The same holds for the splitting approach.

In Figure 6.5(b), we compare the feature extractions F̃D and F̃ P introduced
in (5.2) and (5.1), respectively. We show the difference with respect to accuracy
between evaluating the nonlinear term F and interpolating the required values with
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Fig. 6.5. For the reacting flow example: (a) the comparison between DEIM, parameter-based
LDEIM, and state-based LDEIM; (b) the effect of F̃D and F̃ P feature extraction with and without
interpolation. The results are shown for 40 POD and 20 DEIM modes.
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the matrices defined in (5.3) and (5.4); cf. section 5.2. The figure shows that for this
problem there is no large difference between the two feature extraction methods and
thus there is no significant loss of accuracy if we interpolate the values of F at the
points required by the feature extraction instead of directly evaluating F .

Figure 6.6 plots the temperature of the flame for parameters μ = (7.775e+12,
5.5e+03) and the interpolation points selected by standard DEIM. We see that the
points are concentrated near the inflow boundary Γ2; cf. Figure 6.4. In Figure 6.7
the interpolation points of the local DEIM interpolants for state-based LDEIM with
four clusters are shown. The points either are focused near the top (clusters 1 and
4) corner of the boundary Γ2 or the bottom (cluster 2) of Γ2 or are roughly equally
distributed near Γ2 and in the region with the highest temperature (cluster 3).

In Figure 6.8, we fix the number of POD and DEIM modes and increase the
number of clusters in state-based LDEIM. In Figure 6.8(a), we see that if the number
of POD and DEIM modes is high, e.g., 40/40, then increasing the number of clusters
does not lead to improved accuracy. Even though the DEIM approximation gets
more and more accurate as we increase the number of clusters, the POD basis is
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Fig. 6.6. Interpolation points of standard DEIM for the reacting flow example. The points
are concentrated near the top, middle, and bottom of boundary Γ2 where the fuel and oxidizer are
injected; cf. Figure 6.4.
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Fig. 6.7. For the reacting flow example, the local DEIM interpolation points corresponding to
state-based LDEIM with four clusters are shown. The interpolation points for clusters 1 and 4 are
concentrated at the top corner of the inflow boundary Γ2, the points for cluster 2 are concentrated
at the bottom of Γ2, and the interpolation points for cluster 3 are roughly equally distributed near
Γ2 and in the region with the highest temperature of the flame.
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fixed and thus limits the accuracy of the overall result (although we note that the
magnitude of the errors is already very small). A localization approach for the POD
basis could further improve the accuracy; see, e.g., [14, 1]. Note that although it
might not help to increase the number of clusters of the state-based LDEIM here, it
also does not deteriorate the results. Thus, in contrast to parameter-based LDEIM
with clustering, the clustering in state-based LDEIM does not become unstable for
the problems studied. For these examples, state-based LDEIM is not sensitive to the
number of clusters. These observations are confirmed in Figure 6.8(b).

The runtimes of the offline and online phases of DEIM and LDEIM are plotted in
Figure 6.9. The computations were repeated five times, and reported are the averaged
runtimes on an Intel SandyBridge-EP Xeon E5-2670. We have the same parameters
as for the error plot in Figure 6.5(a). In Figure 6.9(a) we plot the time spent in the
offline phase to construct a ROM with the classical DEIM, parameter-based LDEIM
with splitting (tolerance is 1e-08), and state-based LDEIM (15 clusters). Note that
we did not include the time for the computation of the snapshots. Because LDEIM
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Fig. 6.8. For the reacting flow example, the number of POD/DEIM modes is fixed and the num-
ber of clusters is increased. Increasing the number of clusters improves the accuracy of the DEIM
approximation but the POD basis that approximates the state limits improvement in the overall
result. Results are shown for state-based LDEIM with point-based feature extraction.
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Note that we do not show the results for parameter-based LDEIM with clustering because it becomes
unstable; cf. Figure 6.5(a).
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Table 6.1

State-based LDEIM with 40 POD and 40 DEIM modes for our two feature extraction methods
with up to 90 clusters for the reacting flow example. The runtime of the selection procedure of
state-based LDEIM does not increase when we increase the number of clusters. We also report the
averaged error of the temperature with respect to the full-order model. The errors confirm that the
clustering remains stable as we increase the number of clusters.

F̃P w/out interp F̃D w/out interp F̃P with interp F̃D with interp
k Error Time Error Time Error Time Error Time
10 2.15e-10 1.000 2.65e-10 1.000 2.02e-10 0.230 3.11e-10 0.792
30 4.37e-10 0.969 2.94e-10 0.967 1.01e-09 0.223 4.77e-09 0.797
50 6.73e-09 0.978 2.06e-09 0.983 4.26e-09 0.223 7.04e-09 0.794
70 4.84e-09 0.964 2.20e-09 0.981 4.85e-09 0.222 1.49e-07 0.806
90 4.66e-09 0.942 5.67e-09 0.982 3.40e-09 0.218 6.40e-07 0.816

partitions the snapshots and then builds multiple local DEIM interpolants, the offline
phase corresponding to LDEIM requires about two to three times more time than
with the classical DEIM. Furthermore, the offline runtime of state-based LDEIM is
not deterministic because the number of iterations until convergence of the cluster-
ing method (k-means) depends on the random initial clustering; however, we do not
observe any large outliers. In Figure 6.9(b) we report the runtime of evaluating the
reduced-order model (online phase). It shows that LDEIM has a constant overhead
compared to DEIM due to the selection procedure; however, this overhead is quickly
compensated by the reduction in the dimension of the local DEIM interpolants. For
example, to achieve an error below 10−9, the classical DEIM requires 45 interpolation
points with a runtime of 4.5 · 10−3 seconds, whereas about 20 points are sufficient for
both LDEIM variants leading to a runtime below 4.0 ·10−3 seconds; cf. Figures 6.5(a)
and 6.9(b). We emphasize that we employ a standard MATLAB implementation that
is not fine-tuned for rapid offline and online phases (no parallelization, no vectoriza-
tion). Furthermore, we note that the overhead of the selection procedure becomes
less and less important as the costs of evaluating the nonlinear term increase.

Finally, let us consider the error and runtime results shown in Table 6.1. We
show the averaged relative error and the online runtimes of the selection procedure
of state-based LDEIM with 40 POD and 40 DEIM modes with up to 90 clusters.
Again, the computations were repeated five times and the averaged results are re-
ported. We show the results for the two feature extraction methods F̃D and F̃ P

with and without interpolating the nonlinear term as discussed in section 5.2. The
errors confirm once again that the clustering remains stable as we increase the num-
ber of clusters, even though there is a slight increase in the error corresponding to
F̃D with interpolation. The runtimes in Table 6.1 are normalized with respect to
the runtimes for 10 clusters for the respective feature extraction method without
interpolation. We see that an increase in the number of clusters does not entail
a runtime increase. Furthermore, interpolating the nonlinear term pays off well in
the case of nodal-based feature extraction F̃ P (four times faster) but has only a
small effect when F̃D is employed. That is because the evaluation of F̃D is more
expensive than F̃ P—it requires an additional matrix-vector product—and thus the
evaluation of the nonlinear term does not have such a large share in the overall com-
putational costs.

7. Conclusion. The localized discrete empirical interpolation method was pre-
sented. Instead of only one DEIM interpolant, LDEIM computes several interpolants
by partitioning the set of nonlinear snapshots into k subsets in the offline phase. In
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the online phase, one of the local interpolants is selected for the actual approximation.
In parameter-based LDEIM, the local interpolant is selected with respect to the pa-
rameter of the system. In the state-based LDEIM, a low-dimensional representation
of the nonlinear term evaluated at the state vector of the system is constructed to
indicate which local DEIM approximation to use.

Machine learning methods play a crucial role in all steps of LDEIM. In the offline
phase, the snapshots are clustered with k-means to construct the local interpolants,
and in the online phase, the selection procedure relies on classification where nearest
neighbor classifiers were employed here. Furthermore, the low-dimensional represen-
tation of the nonlinear term in the state-based LDEIM is computed with feature
extraction. This low-dimensional representation also leads to a lower-dimensional
clustering task and thus to a more stable clustering approach.

As for model order reduction in general, our LDEIM is suited for applications
that can cope with an increased offline phase in favor of rapid online evaluations.
The only additional costs incurred by LDEIM over DEIM in the online phase are the
evaluation costs of the selection procedure. Due to the properties of nearest neighbor
classifiers, however, these costs are low if compared to the computational costs of
the rest of the procedure. For three benchmark problems, LDEIM achieved accuracy
improvements up to four orders of magnitude with respect to DEIM for the same
number of interpolation points. In the reacting flow example, the accuracy of the
reduced-order model with LDEIM was about two orders of magnitude better than
with DEIM.
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